A theorem on infinite Nielsen extensions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Infinite Unramified Extensions

Let k be a number field. A natural question is: Does k admit an infinite unramified extension? The answer is no, if the root discriminant of k is less than Odlyzko’s bounds. The answer is yes, if k fails the test of Golod-Shafarevic for a prime number p. In that case, we know that there exists an infinite unramified p-extension L over k. But generally it is fairly difficult to determin whether ...

متن کامل

Extensions to Basu’s theorem, factorizations, and infinite divisibility

We define a notion of approximate sufficiency and approximate ancillarity and show that such statistics are approximately independent pointwise under each value of the parameter. We do so without mentioning the somewhat nonintuitive concept of completeness, thus providing a more transparent version of Basu’s theorem. Two total variation inequalities are given, which we call approximate Basu the...

متن کامل

The Nielsen-Thurston Classification Theorem

Overview: The Nielsen-Thurston Classification Theorem asserts that every element of MCG(Sg) (g ≥ 2) exhibits one of three types of simple behavior. It either has finite order, fixes a nonempty set of of isotopy classes of essential, simple closed curves (reducible), or stretches along a pair of transverse measured foliations in an area-preserving way (pseduo-Anosov). Bers’ strategy for proving ...

متن کامل

A Proof of the Nielsen-Ninomiya Theorem

The Nielsen-Ninomiya theorem asserts the impossibility of constructing lattice models of non-selfinteracting chiral fermions. A new proof is given here. This proof fills a technical gap in the two proofs presented by the authors of the theorem. It also serves as prelude to an investigation of the chiral properties of the general lattice model.

متن کامل

On extensions of Myers' theorem

Let M be a compact Riemannian manifold and h a smooth function on M. Let h (x) = inf jvj=1 (Ric x (v; v) ? 2Hess(h) x (v; v)). Here Ric x denotes the Ricci curvature at x and Hess(h) is the Hessian of h. Then M has nite fundamental group if h ? h < 0. Here h =: + 2L rh is the Bismut-Witten Laplacian. This leads to a quick proof of recent results on extension of Myers' theorem to mani-folds with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1986

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1986-0840629-2